

AFRL-IF-RS-TR-2005-39
Final Technical Report
February 2005

COMPONENTS FOR ONTOLOGY DRIVEN
INFORMATION PUSH

AT&T Government Solutions, Incorporated

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K534

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information

Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-39 has been reviewed and is approved for publication

APPROVED: /s/

RAYMOND A. LIUZZI
Project Engineer

 FOR THE DIRECTOR: /s/

JOSEPH CAMERA, Chief
Information & Intelligence Exploitation Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2005

3. REPORT TYPE AND DATES COVERED
Final Jun 00 – Jun 05

4. TITLE AND SUBTITLE
COMPONENTS FOR ONTOLOGY DRIVEN INFORMATION PUSH

6. AUTHOR(S)
Lewis L. Hart

5. FUNDING NUMBERS
C - F30602-00-C-0192
PE - 62301E
PR - DAML
TA - 00
WU - 06

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AT&T Government Solutions, Incorporated
1900 Gallow Road
Vienna Virginia 22182

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFED
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-39

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Raymond A. Liuzzi/IFED/(315) 330-3577/ Raymond.Liuzzi@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The CODIp program provides frameworks and components for intelligent processing of information based on its
semantics. UML technology was leveraged to provide knowledge engineering capability from existing resources. UML
was also developed as an ontology definition technology through work with the Object Management Group (OMG). A
variety of Ontological processing components and services were developed that can bring built-in knowledge
processing capability to intelligent information system applications.Four primary applications were developed & supported
by these technologies. Duet was developed to support visualization, application and management of ontologies using
the UML/MOF engineering standard. Kage provides an application framework that supports analysis, translation, and
repository functionality. An agent-based, Ontology Driven Knowledge Dissemination (ODKD) system was developed
that implements a semantics driven publish and subscribe information distribution systems. And, lastly, Artic ontology
mapping service was developed which supports concurrent use of multiple ontologies by finding and codifying
relationships between their concepts.

15. NUMBER OF PAGES
49

14. SUBJECT TERMS
Ontology, Semantic Web, Data/Knowledge Base, Artificial Intelligence

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

Overview of Accomplishments.. 1
Development Process and Procedures ... 1

Home Works .. 1
DAML Homework Assignment 1: DAML Home Pages....................................... 1
DAML Homework Assignment 2: DAML Queries/Life Cycle 2
DAML Homework Assignment 3: Large-Scale DAML Content 2

Hot DAML... 2
Hot DART.. 3
Hot DDIP ... 3

Standards and Publications .. 4
Standards .. 4
Publications .. 4

Leave Behinds.. 5
Modeling in UML .. 5
Ontology Articulation .. 6
Ontology Driven Knowledge Dissemination... 6
Kage Technology Components .. 7

Developed Ontologies.. 8
Early Adopter Programs... 8

Demonstrations .. 9
Lessons Learned and Remaining Problems ... 9

Object Centric View... 9
Incremental Value .. 9
Integration with HTML.. 10

Appendix A – Selected Paper - Usage Scenarios and Goals For Ontology Definition
Metamodel .. 11

Introduction.. 13
Perspectives.. 13
Acknowledgement ... 15

Usage Scenarios ... 15
Business Applications .. 17
Analytic Applications .. 19
Engineering Applications... 20

Goals for ODM .. 22
References .. 23

Appendix B – Selected Paper – OWL Full and UML 2.0 Compared.......................... 24
1. Introduction.. 26
2. Features in common (more or less).. 27

2.1 UML Kernel ... 27
2.2 Class and property - basics... 29
2.3 More advanced concepts .. 34
2.4 Summary of more or less common features... 39

ii

3. OWL but not UML .. 41
3.1 Predicate definition language... 41
3.2 Names... 42
3.3 Other OWL developments ... 42

4. In UML but not OWL .. 43
4.1 Behavioral features... 43
4.2 Complex objects... 43
4.3 Access control .. 44
4.4 Keywords ... 44

5. References .. 44

List of Figures

FIGURE 1 - THE HOTDART CONCEPT. .. 3
FIGURE 2 - THE HOTDDIP CONCEPT... 3
FIGURE 3 - DUET UML ONTOLOGY MODELING TOOL .. 5
FIGURE 4 - HIGH-LEVEL ARCHITECTURE OF THE ARTIC ARTICULATION SERVICE. ... 6
FIGURE 5 - HIGH-LEVEL ARCHITECTURE OF THE KAGE APPLICATION FRAMEWORK. 7

 1

Overview of Accomplishments
The scope and objectives stated in our proposal fro the Components for Ontology

Driven Information Push (CODIP) project were:

“The scope of this effort includes three (3) developmental phases: Ontology
Development, Articulation Construction, and Fact Processing. These phases
encompass the construction of DARPA Agent Markup Language (DAML) -
Enhanced UML Tool, Ontology Articulation Builder, and Ontology Fact
Processor, respectively. The effort will culminate in the evaluation of the
CODIP suite of components.”

AT&T has accomplished these objectives, as well as fully participating in the DAML

programmatic process.
This effort has developed a suite of agent-based ontology-centric components which

achieve and demonstrate semantic interoperability between agents and data sources.
CODIP has developed four key capabilities as technical accomplishments:

- Kage – A knowledge access engine that facilitates knowledge based

applications by providing a Java framework for systems integration, analysis,
translation, and repository functionality.

- Duet - An application of UML technology to leverage existing resources to
provide knowledge engineering capability. Supporting visualization,
application and management of ontologies using the UML/MOF engineering
standards.

- Artic - Technology to support using multiple ontologies concurrently by
finding and codifying relationships between their concepts and an
implementation of articulation components and services that apply these
technologies.

- ODKD - An intelligent information publish and subscribe application that
provides a Semantics based publication of information based upon user
specified requirements.

Development Process and Procedures

Home Works
A number of ‘homework’ assignment were performed as directed. AT&T results for

these assignments are available on the project web site, a brief summary of the tasking
and our solution follows.

DAML Homework Assignment 1: DAML Home Pages
Announced at the DAML Kickoff meeting, each team was expected to use DAML-

ONT to define an ontology and markup home pages describing their project, personnel,
and related information. These pages were to be made publicly accessible on the Internet
to provide DAML examples and test data for our initial DAML experiments.

 2

Our Solution
The AT&T solution was the original CODIP web site, which is still active at the URL

http://codip.grci.com. The initial mark-up of this site uncovered the issues with imbedded
RDF/XML in HTML content, which have not yet been fully resolved by the community.

DAML Homework Assignment 2: DAML Queries/Life Cycle
This assignment was intended to get everyone thinking about the portions of the

DAML "life cycle" beyond ontology and content creation. Each team proposed five
queries of increasing complexity that might be performed and described how these
queries could be implemented, identifying the major software components, control and
data flow among them.

Our Solution
The AT&T solution resulted in the production of queries in English, Object Query

Language, and XQL. The architecture that was developed to answer these queries
ultimately evolved into Kage, which is discussed below.

DAML Homework Assignment 3: Large-Scale DAML Content
This assignment is intended to gain experience with DAML+OIL, focus attention on

creating instances (content) as well as ontologies, provide additional DAML content for
subsequent experiments, and to get everyone thinking about large-scale conversion
and/or dynamic generation of DAML content.

Our Solution
AT&T selected information directories as the domain of interest for this assignment.

This was motivated by the existence of several world wide web topical directories, for
example Open Directory Project, Yahoo!, Net Guide, and About.com . These directories
all contain similar information, however their structures are each slightly different. To
provide a basis for an ontology driven information push facility, AT&T has modeled a
generic Web Directory ontology that incorporates features common to these directories.
As a test case, a selected subset of facts from the Open Directory’s Computer topic was
converted into equivalent facts represented in the Web Directory ontology.

The fact processor used in the solution of this assignment provided some of the core
concepts and components ultimately used in the ODKD.

Hot DAML
AT&T participated in the ‘HotDAML’ unique application development segment of the

DAML program. AT&T produced two candidate entries, HotDART and HotDDIP that
ultimately resulted in the Artic and ODKD prototypes respectively.

 3

Hot DART
 The HotDART project leveraged IR&D funding to integrate the existent AT&T

developed Data Analysis and Reconciliation Tool (DART) with DAML ontology
articulation technology from the program.

WWW
B

A

DMIRDMIRDARTDART

ImportImport
XSLTXSLT

ExportExport

Articulation ServiceArticulation Service

DAML APIDAML API
JessJess

XSLTXSLT
DART XML
Registration

DART XML
Comparison

A : B

Rules

Figure 1 - The HotDART Concept.

The project's objective was to build a distributed, web-centric Relational Database

Management System (RDBMS) meta-data analysis and management tool. This
integration would enhance the data analysis capability of DART with Artic autonomous
articulation capability, and conversely provide a transition path for CODIP technology
into DoD projects. The follow on to the DART tool is currently used by the Marine Corps
Systems Command (MCSC) to capture and manage the meta-data descriptions of its
logistics systems.

Hot DDIP
The HotDDIP project's objective was to provide DAML Driven Information Push

through a content based publish and subscribe services for any stream of marked-up
documents.

This document stream could be DAML marked up e-mails, military format messages,
and events in an ERP system or simply the documents collected by a web crawler.

HotDDIP Publish and SubscribeHotDDIP Publish and Subscribe

Document FeederDocument Feeder

Talker

Listener

ASA Simulation ASA Simulation
Command

 and Control
System Interface

Logistic
Systems

Interfaces

Alternative
Action

Analyzer

Platform
Sensor

Assessment

Command and
Control
System
Interface

TOC

XML

DAML

DAML CrawlerDAML Crawler

Phase I
Phase II

XSLT
Engine

Publication
Service

Ontology
Service Subscription

Service

Query
Service BCM

Various

Document Repository
•RetrivalWare
•Sybase EP
•Other

Document Repository
•RetrivalWare
•Sybase EP
•Other

Figure 2 - The HotDDIP Concept

A user community could establish a service site, than both community members and
others agreed upon sources that could publish information through the service to users

 4

subscribed based on content description queries. Nominally, subscriptions would be
submitted and managed through a WWW interface and published documents delivered
through eMail.

Standards and Publications

Standards
The AT&T team was one of the principle authors of the Ontology Management Group

(OMG) RFP for the Ontology Definition Metamodel, as well as one of the responders to
this RFP. The RFP and initial submission can be found on the OMG web site at:
http://www.omg.org, under the Analysis and Design Task Force (ADTF) activity. A
working draft of the revised response can be found at:

• L.Hart, P. Emery, B. Colomb, K. Raymond, D. Chang, Y. Ye, E. Kendall, M.

Dutra; ODM Revised Submission, Working Papers and Presentations, Jan 26
2004; http://codip.AT&T .com/odm/draft/

The final revised submission is scheduled to be submitted on 10 Jan 2004, and will be

available through the OMG site when finalized.

Publications
The following publications, as well as several still to be published, have resulted

directly from this work:

• Paul Kogut, Stephen Cranefield, Lewis Hart, Mark Dutra, Kenneth Baclawski,
Mieczyslaw Kokar, Jeffrey Smith; “UML for Ontology Development”;
Knowledge Engineering Review Journal Special Issue on Ontologies in Agent
Systems, 2002 Vol. 17

• Kenneth Baclawski, Mieczyslaw Kokar, Paul Kogut, Lewis Hart, Jeffrey Smith,
William Holmes, Jerzy Letkowski, Mike Aronson; “Extending UML to Support
Ontology Engineering for the Semantic Web”; Fourth International Conference
on UML (UML 2001), Toronto, October 1-5, 2001

• Lewis Hart and Patrick Emery; “Including Topic Maps in the Ontology Definition
Meta-Model”; Model Driven Semantic Web Workshop, eDoc 2004, Monterey,
CA.

• Lewis Hart and Patrick Emery; “A Description Logic for use as the ODM Core”;
Model Driven Semantic Web Workshop, eDoc 2004, Monterey, CA.

• L.Hart, P. Emery, B. Colomb, K. Raymond, D. Chang, Y. Ye, E. Kendall, M.
Dutra, “Usage Scenarios and Goals Motivating Development of an Ontology
Definition Metamodel”; Ontology Definition Metamodel”; Lecture Notes in
Computer Science (Springer-Verlag) Volume 3306, p. 596, Proceedings of WISE
2004: 5th International Conference on Web Information Systems Engineering,
Brisbane, Australia, November 22-24, 2004; http://www.omg.org/cgi-
bin/doc?ontology/2004-01-01

 5

• L.Hart, P. Emery, B. Colomb, K. Raymond S.Taraporewalla, D. Chang, Y. Ye, E.
Kendall, M. Dutra, "OWL Full and UML 2.0 Compared",
http://www.omg.org/cgi-bin/doc?ontology/2004-03-01

• Rittwik Jana, Serban Jora, Christopher W Rice, Yih-Farn Chen, Lewis Hart,
Patrick Emery, "Empowering the Battlefield With a Mobile Middleware
Platform". Published in the proceedings of MILCOM 2003,
http://expo.jspargo.com/milcom03/an.asp, October 13-16.

• Kenneth Baclawski, Mieczyslaw M. Kokar, Paul A. Kogut, Lewis Hart, Jeffrey
Smith, William S. Holmes III , Jerzy Letkowski, Michael L. Aronson, and Patrick
Emery, “Extending the Unified Modeling Language for ontology development”,
http://link.springer.de/link/service/journals/10270/bibs/2001002/20010142.htm
Published in Fall 2002 Issue of the Springer journal ("Software and System
Modeling").

Leave Behinds

Modeling in UML
The CODIP program developed and released for evaluation a prototype UML tool

called Duet that provides a basic capability to represent ontologies in a UML model.
Duet provides from scratch ontology development capability, as well as import and
export of OWL, using UML Classes and Class Diagrams.

The original UML-to-DAML mapping was developed in collaboration with the
Lockheed Martin UBOT team. That mapping is being developed into an OMG standard
for OWL through collaboration with IBM, DSTC, Sandpiper Software, and Gentleware.

Managed
Ontologies Ontology

Services

Ontology
Services

Source
Descriptions Expert

Knowledge

Model
Meta-data

Managed
Ontologies Ontology

Services

Ontology
Services

Source
Descriptions

Source
Descriptions Expert

Knowledge

Model
Meta-data

Figure 3 - Duet UML Ontology Modeling Tool

 6

Duet provides a UML visualization and authoring environment for ontologies. Duet
has the capability to work with multiple ontologies simultaneously, and to interact with
other Kage services to interactively build articulations between ontologies.

Its intended users are database designers and systems engineers, many of whom all
ready have a good understanding of UML and object-oriented modeling, which they can
leverage to apply OWL to their systems.

In addition to the from-scratch development capabilities, Duet also provides the ability
to import existing UML models, in XMI and Rational Rose formats. The visualization of
ontologies in UML will facilitate their analysis and validation by Subject Matter Experts
(SME). AT&T used Duet to develop specific ontologies to support the ‘homework’,
experiments and prototypes.

Ontology Articulation
The Ontology Articulation Service, Artic, provides automated analysis of mappings

between ontologies and builds articulation ontologies that codify the mappings in OWL.
Artic uses a Java library of text analysis capabilities, coordinated in a rule-based
environment provided by the Kage environment.

 The rule based reasoning environment is based on the Java Expert System Shell
(JESS) developed at Sandia Laboratories. Artic’s analysis utilizes explicit information
(thesauruses, other ontologies), implicit information (structure, data-types, known
patterns) and human guidance to produce articulations ontologies.

Artic participated in the NST sponsored I3CON Ontology alignment trials in August
2004.

Ontology Driven Knowledge Dissemination
The CODIP project developed a prototype Ontology Driven Knowledge

Dissemination (ODKD) system. The prototype is built as a distributed collection of
software agents, using the MARIA architecture. ODKD allows subscribers to define their
information requirements as an OntoQL query, then as information resources are
published, the queries are applied to each and relevant portions of them are disseminated
to the subscribers. OntoQL is a closely related to the RDF Query Language (RQL)
defined by G. Karvounarakis and V. Christophides at the Institute of Computer Science
and is similar to XQL .

Ontology
Mapping
Engine

Duet

Other
Tools

Articulation
Ontology

API

API

Source
Ontologies

Knowledge
Access
Engine

Artic
ServiceA

 P
 I

A
 P

 I Ontology
Mapping
Engine

Duet

Other
Tools

Articulation
Ontology

API

API

Source
Ontologies

Knowledge
Access
Engine

Knowledge
Access
Engine

Artic
ServiceA

 P
 I

A
 P

 I

Figure 4 - High-level architecture of the Artic articulation service.

 7

 The ODKD supports near real-time dissemination of information from multiple

source channels into multiple subscriber channels. ODKD provides a publish and
subscribe service that uses OWL ontologies and articulations to route specific content to
consumers based on their semantic information requirement. Basing information
distribution upon the information's semantics provides a high degree of self-organization
within the information flow. This eliminates the need for predetermined source
identification and fixed routing schemes.

Kage Technology Components
In order to support technology and tool development, AT&T has also developed a

suite of ontology components and deployment framework, which we have called the
Knowledge Access Engine or Kage. Kage is composed of third party open source tools,
such as components form Kaon and Apache, as well as custom developed open source
capabilities and integrations code.

Framework

User Interface Application Interface

Resource Manager
Repository API

Non-Text
Stores

Text
Stores

File
System
Stores

DBMS
Stores

Matching
Engine

Query
Engine

Rule
Engine

NL
Processors

Articulation
Service

Structure
Processors

Document
Processing

Publish &
Subscribe

Review &
Annotate

Admin

Lexical
Processor

O
nt

ol
og

ie
s

R
ef

er
en

ce
 …

 D
om

ai
n

…
 A

pp
lic

at
io

n

Framework

User Interface Application Interface

Framework

User Interface Application Interface

Resource Manager
Repository API

Non-Text
Stores

Text
Stores

File
System
Stores

DBMS
Stores

Matching
Engine

Query
Engine

Rule
Engine

NL
Processors

Articulation
Service

Structure
Processors

Document
Processing

Publish &
Subscribe

Review &
Annotate

Admin

Lexical
Processor

Matching
Engine

Query
Engine

Rule
Engine

NL
Processors

Articulation
Service

Structure
Processors

Document
Processing

Publish &
Subscribe

Review &
Annotate

Admin

Lexical
Processor

O
nt

ol
og

ie
s

R
ef

er
en

ce
 …

 D
om

ai
n

…
 A

pp
lic

at
io

n
O

nt
ol

og
ie

s
R

ef
er

en
ce

 …
 D

om
ai

n
…

 A
pp

lic
at

io
n

Figure 5 - High-level architecture of the Kage application framework.

The primary users of these components will be the application developer community.

Some of the key components of Kage are:

• Resource Manager and Repository - The Resource Manager provides ontology
meta-modeling, local persistence, caching, reference resolution, and interfaces.

• Internal and External interfaces – External interfaces for applications include

OGraph, Articulation and UML Meta-Model APIs. These provide Java
interfaces and utility classes for manipulation of ontologies. The (UMM) API
provides access to OWL as mapped into UML.

 8

• Articulation Service - The OAB will provide an analysis of similarities between

ontologies. The analysis utilizes explicit information (thesauruses, other
ontologies), implicit information (structure, data-types, known patterns) and
human guidance to produce articulations ontologies.

• Publish and Subscribe Engine - The Ontology Fact Processor is built around an

information push engine, implemented as a collection of MARIA Behaviors
that provide a semantics-based information push system.

• Rule Engine - The Java Expert System Shell (JESS) developed at Sandia

Laboratories has been integrated in to the Kage environment. It provides a rule
based reasoning environment for.

• Ontology Query Engine (OntoQL) - Implemented by translating the OntoQL

queries into Jess rules, which then are run in the Rule Engine.

Developed Ontologies
A number of general ontologies were developed early on in the CODIP program, both

as part of the ‘homework’ assignment and to facilitate transition. These ontologies were
developed in UML, using the evolving Duet prototypes. This work provided valuable
inputs to both Duet and the OMG Ontology Definition Metamodel development.

The Ontologies currently available are:

- Project Ontology for the description of project organization,
- Web Site Ontology for the description of a web site,
- Test Maintenance and Diagnostic Ontology a basic ontology for the description

of Army Test, Maintenance, and Diagnostic situations.
- Web Topical Directory Ontology for the generic description of topical World

Wide Web directories, such as Yahoo.
- RDBMS Ontology for the representation of relational database schemas.

Early Adopter Programs
AT&T Government Solutions, Inc. actively pursued the transition of DAML products

to funded early adopter projects, such as ATD, JEFX and ACT II programs, including the
following programs*:

- HORUS – IntelLink - Intelligence Intranet. Transition HotDDIP and D4

technology.
- GTN21 - TRANSCOM - Next generation of the Global Transportation

Network (GTN) which is one of US Transportation Command's primary
information systems.

* Program name - Customer organization and Brief description.

 9

- Automatic Threat Response using Intelligent Agents (ATRIA) – NRO - An
intelligence community opportunity for threat assessment based upon sensor
reports, separate from HORUS.

- PA1 – NRO - An intelligence community opportunity, separate from HORUS.
- Shared Data Environment (SDE) - Marine Corps Systems Command (MCSC)

Development of a data warehouse that integrates roughly one hundred separate
data sources.

- Joint Battlespace Infosphere (JBI) BAA - Air Force Research Lab / Rome -
Semantic based information push to support situation awareness and
intelligence analysis.

- LogC2 Advanced Technology Demonstrations (ATD) and Agile Commander
ATD BAAs - CECOM Next generation of MARIA to include CODIP
technology and services.

- Ground Logistics Command and Control (GLC2) – Marines Corps - Command
and control for Corps logistic during ashore operations.

AT&T has also worked with several other organizations that are likely to benefit from

CODIP, and more generally DAML, developed technologies, including DISA/DSO for
data standardization, data segmentation in the DII/COE, and the Defense Model and
Simulation Office (DMSO) .

Demonstrations
AT&T has participated in several of the demonstration sessions facilitated at the

program PI Meetings. The demonstrations have included: Duet, HotDIPP and ODKD,
HotDART and Artic and the Kage RDF Store.

Lessons Learned and Remaining Problems

Object Centric View
The typical statement-centric view of parsed RDF, we believe, is difficult to use for

analysis of the ontologies. While the RDF tuples are very flexible, allowing any one to
say anything, the fragment concepts into relatively small pieces. We found it more
difficult and more complex to directly use the RDF tuples. A higher level, object centric
view of the RDF tuples provides significant advantages:

- User understanding by presenting the related tuples as a single conceptual

entity,
- Application of other commercial object oriented tools such as UML CASE

tools and other object based technology,
- Interaction with other third party tools, for example the Java Expert System

Shell, (JESS) from Sandia Labs, and
- Interfacing to object oriented languages, specifically, Java.

Incremental Value
It is clear that in the short term, there will exist far more non-annotated information

sources than annotated sources. DAML technology must be applied to provide an

 10

incremental improvement that can be realized through interaction with the existing web
content. The implication of this is that early adaptor systems must be able to add
operational value using minimal, partial and incomplete OWL annotations. Or, more
succinctly, any OWL must be better than no OWL.

Integration with HTML
HTML combined with RDF can be problematic. Many of the existing information

sources contained HTML tags – often broken HTML tags. While HTML parsers are
forgiving, XML, RDF and XHTML parsers are not. The three most common errors found
in the embedded HTML were: unquoted attribute values, missing end tags in non-empty
elements, and incorrect nesting of tags. Their remains an urgent need for a standard
mechanism for combining RDF/XML with HTML/XHTML.

 11

Appendix A – Selected Paper - Usage Scenarios and
Goals For Ontology Definition Metamodel

This appendix was originally published as:

• L.Hart, P. Emery, B. Colomb, K. Raymond, D. Chang, Y. Ye, E. Kendall, M.

Dutra, “Usage Scenarios and Goals Motivating Development of an Ontology
Definition Metamodel”; Ontology Definition Metamodel”; Lecture Notes in
Computer Science (Springer-Verlag) Volume 3306, p. 596, Proceedings of WISE
2004: 5th International Conference on Web Information Systems Engineering,
Brisbane, Australia, November 22-24, 2004; http://www.omg.org/cgi-
bin/doc?ontology/2004-01-01

 12

Usage Scenarios and Goals For Ontology Definition
Metamodel

This document is intended to establish a set of usage scenarios and goals to

motivate development of the Ontology Definition Metamodel (ODM). The contents
of the final version of this document will be incorporated in the ODM specification
to provide context for its application and use.

Version 2.7
January 2004

Co-submitters:
AT&T/Gentleware Lewis Hart, Patrick Emery
DSTC Bob Colomb, Kerry Raymond
IBM Dan Chang, Yiming Ye
Sandpiper Software Elisa Kendall, Mark Dutra

 13

 Introduction
This document provides motivation for the Ontology Definition Metamodel (ODM)

by describing several usage scenarios for ontologies and by proposing example
applications for use in these scenarios. Many of the scenarios and applications are based
on efforts currently underway in industry and academia. The scenarios descriptions are
followed by goals for the ODM.
The usage scenarios presented herein highlight characteristics of ontologies that represent
important design considerations for ontology-based applications. They also motivate
some of the features and functions of the ODM and provide insight into when users can
limit the expressivity of their ontologies to a description logics based approach, as well as
when additional expressivity, for example from first order logic, might be needed. This
set of examples is not intended to be exhaustive. Rather, the goal is to provide
sufficiently broad coverage of the kinds of applications the ODM is intended to support
that ODM users can make informed decisions when choosing what parts of the ODM to
implement to meet their development requirements and goals.

This analysis can be compared with a similar analysis performed by the W3C Web
Ontology Working Group [1]. We believe that the six use cases and eight goals
considered in [1] provide additional, and in some cases overlapping, examples, usage
scenarios and goals for the ODM.

Perspectives
In order to ensure a relatively complete representation of usage scenarios and their

associated example applications, we evaluated the coverage by using a set of
perspectives that characterize the domain. Table 1 provides an overview of these
perspectives.

Perspective One Extreme Other Extreme

Level of
Authoritativeness

Least authoritative,
broader, shallowly defined
ontologies

Most authoritative,
narrower, more deeply
defined ontologies

Source of Structure Passive (Transcendent) –
structure originates outside
the system

Active (Immanent) –
structure emerges from data or
behavior

Degree of Formality Informal, or primarily
taxonomic

Formal, having rigorously
defined types, relations, and
theories or axioms

Model Dynamics Read-only, ontologies are
static

Volatile, ontologies are
fluid and changing.

Instance Dynamics Read-only, resource
instances are static

Volatile, resource instances
change continuously

Control / Degree of
Manageability

Externally focused, public
(little or no control)

Internally focused, private
(full control)

Application Static (with periodic Dynamic

 14

Changeability updates)
Coupling Loosely-coupled Tightly-coupled
Integration Focus Information integration Application integration
Lifecycle Usage Design Time Run Time

Table 1. Perspectives of applications that use ontologies that are considered in
this analysis.

We found that these perspectives could be divided into two general categories, those

that are model centric and those that are application centric. The model centric
perspectives characterize the ontologies themselves and are concerned with the structure,
formalism and dynamics of the ontologies, they are:

 Level of Authoritativeness – Least authoritative ontologies define a broad set of

concepts, but to a limited level of detail while the most authoritative ontologies
are likely to be the narrowest, defining limited numbers on concepts to a greater
depth of detail. More authoritative ontologies will represent safer long term
investments and thus are likely to be developed to a greater depth.

 Source of Structure – The source of an ontologies structure can be defined by
external sources that are transcendent, or it can be defined by information internal
to the data and using applications that is immanent.

 Degree of Formality – refers to the level of formality from a knowledge
representation perspective, ranging from highly informal or taxonomic in nature,
where the ontologies may be tree-like, involving inheritance relations, to semantic
networks, which may include complex lattice relations but no formal axiom
expressions, to ontologies containing both lattice relations and highly formal
axioms that explicitly define concepts.

 Model Dynamics – Some ontologies tend to be stable, while others are likely to
be modified dynamically by the agents or applications that use them.

 Instance Dynamics–refers to the degree that information resources or knowledge
bases that use the ontology change as a result of some action the application takes
as it is running.

Application centric perspectives are concerned with how application use and

manipulate the ontologies, they are:

 Control / Degree of Manageability – refers to the scope of control of the
application using one or more ontologies, and also of control over changes made
in the ontologies or knowledge bases. The ontology evolution control may span
organizations or operate inside a private firewall or VPN, For public ontologies
there may be little to no control from an ontology evolution perspective.

 Application Changeability – The ontologies may be applied statically, as they
might be if used for database schema mapping, with periodic updates to support

 15

evolution in the schemas, or they may be applied dynamically, as in an
application that composes web services at run time.

 Coupling – refers to the degree that the information resources or applications
using the ontologies are coupled.

 Integration Focus – refers to the degree that support information is focused on
interoperability alone, information and application interoperability, or application
interoperability without regard to content.

 Lifecycle Usage – refers to the phase of a project life cycle in which the
ontologies are used. This ranges from early design and analysis phases to being an
active part of the application at run time.

Acknowledgement
The co-submitters would like to thank the following people for review and comments

on this document:
John Kling, John Poole

Usage Scenarios
As might be expected, some of these perspectives tend to correlate across different

applications, forming application areas with similar characteristics. Our analysis,
summarized in Table 2, has identified three major clusters of application types that share
some set of perspective values:

• Business Applications are characterized by having transcendent source of

structure, a high degree of formality and external control relative to nearly all
users.

• Analytic Applications are characterized by highly changeable and flexible
ontologies, using large collections of mostly read-only instance data.

• Engineering Applications are characterized by again having transcendent
source of structure, but as opposed to business applications their users control
them primarily internally and they are considered more authoritative.

U

se
 C

as
e

C
lu

st
er

s
C

ha
ra

ct
er

is
tic

 P
er

sp
ec

tiv
e

V
al

ue
s

M

od
el

 C
en

tri
c

A
pp

lic
at

io
n

C
en

tri
c

D
es

cr
ip

tio
n

A
ut

ho
rit

at
iv

en
es

s
St

ru
ct

ur
e

Fo

rm
al

ity

M
od

el

D
yn

am
ic

s
In

st
an

ce

D
yn

am
ic

s
C

on
tro

l
C

ha
ng

e-
ab

ili
ty

C

ou
pl

in
g

Fo
cu

s
Li

fe
 C

yc
le

2.
1

B
us

in
es

s A
pp

lic
at

io
ns

Fr
om

 O
ut

si
de

Fo
rm

al

E
xt

er
na

l

2.
1.

1
 R

un
-ti

m
e

In
te

ro
pe

ra
tio

n
Le

as
t/B

ro
ad

Fr

om

O
ut

si
de

Fo

rm
al

R

ea
d-

O
nl

y
Vo

la
til

e
E

xt
er

na
l

S
ta

tic

Ti
gh

t
In

fo
rm

at
i

on

R
ea

l T
im

e

2.
1.

2
A

pp
lic

at
io

n
G

en
er

at
io

n
M

os
t/D

ee
p

Fr
om

O

ut
si

de

Fo
rm

al

R
ea

d-
O

nl
y

R
ea

d-
O

nl
y

E
xt

er
na

l
S

ta
tic

Lo

os
e

??
?

A
ll

2.
1.

3
O

nt
ol

og
y

Li
fe

cy
cl

e
M

id
dl

e/
B

ro
ad

&
D

ee
p

Fr
om

O

ut
si

de

S
em

i-
Fo

rm
al

 /
Fo

rm
al

R
ea

d-
O

nl
y

R
ea

d-
O

nl
y

E
xt

er
na

l
S

ta
tic

Ti

gh
t

??
?

R
ea

l T
im

e

2.
2

A
na

ly
tic

 A
pp

lic
at

io
ns

V
ol

at
ile

R

ea
d-

O
nl

y

D
yn

am
ic

Fl

ex
ib

le

2.
2.

1
Em

er
ge

nt
 P

ro
pe

rt
y

D
is

co
ve

ry

B
ro

ad
 &

 D
ee

p
Fr

om
 In

si
de

In
fo

rm
al

V

ol
at

ile

R
ea

d-
O

nl
y

In
te

rn
al

 &

E
xt

er
na

l
D

yn
am

ic

Fl
ex

ib
le

In

fo
rm

at
i

on

R
ea

l T
im

e

2.
2.

2
Ex

ch
an

ge
 o

f C
om

pl
ex

D

at
a

Se
ts

B

ro
ad

 &
 D

ee
p

Fr
om

 In
si

de
In

fo
rm

al

V
ol

at
ile

R

ea
d-

O
nl

y/

V
ol

at
ile

In

te
rn

al
 &

E

xt
er

na
l

D
yn

am
ic

Fl

ex
ib

le

In
fo

rm
at

i
on

R

ea
l T

im
e

2.
3

E
ng

in
ee

ri
ng

 A
pp

lic
at

io
n

B
ro

ad
 &

 D
ee

p
Fr

om

O
ut

si
de

In
te

rn
al

2.
3.

1
 In

fo
rm

at
io

n
Sy

st
em

D

ev
el

op
m

en
t

B
ro

ad
 &

 D
ee

p
Fr

om

O
ut

si
de

S

em
i-

Fo
rm

al
 /

Fo
rm

al

R
ea

d-
O

nl
y

Vo
la

til
e

In
te

rn
al

C

ha
ng

ea
bl

e
Ti

gh
t

In
fo

rm
at

i
on

D

es
ig

n
Ti

m
e

2.
3.

2
O

nt
ol

og
y

A
na

ly
si

s
B

ro
ad

 &
 D

ee
p

Fr
om

O

ut
si

de

S
em

i-
Fo

rm
al

 /
Fo

rm
al

V
ol

at
ile

V

ol
at

ile

In
te

rn
al

C

ha
ng

ea
bl

e
Fl

ex
ib

le

??
?

D
es

ig
n

Ti
m

e

 Ta
bl

e
–

2
U

sa
ge

 s
ce

na
rio

 p
er

sp
ec

tiv
e

va
lu

es

goodelle
Text Box
16

 17

Business Applications

Run Time Interoperation
Externally focused information interoperability applications are typically characterized by strong de-

coupling of the components realizing the applications. They are focused specifically on information rather
than application integration (and here we include some semantic web service applications, which may
involve composition of vocabularies, services and processes but not necessarily APIs or database schemas).
Because the community using them must agree upon the ontologies in advance, their application tends to be
static in nature rather than dynamic.

Perspectives that drive characterization of these scenarios include:

 The level of authoritativeness of the ontologies and information resources.
 The amount of control that community members have on the ontology and

knowledge base evolution
 Whether or not there is a design time component to ontology development and

usage
 Whether or not the knowledge bases and information resources that

implement the ontologies are modified at run time (since the source of
structure remains relatively unchanged in these cases, or the ontologies are
only changed in a highly controlled, limited manner).

These applications may require mediation middleware that leverages the

ontologies and knowledge bases that implement them, potentially on either side of the
firewall – in next generation web services and electronic commerce architectures as
well as in other cross-organizational applications, for example:

a) For semantically grounded information interoperability, supporting highly
distributed, intra- and inter-organizational environments with dynamic
participation of potential community members, (as when multiple
emergency services organizations come together to address a specific
crisis), with diverse and often conflicting organizational goals.

b) For semantically grounded discovery and composition of information and
computing resources, including Web services (applicable in business
process integration and grid computing).

c) In electronic commerce exchange applications based on stateful protocols
such as EDI or Z39.50, where there are multiple players taking roles
performing acts by sending and receiving messages whose content refers
to a common world.

In these cases, we envision a number of agents and/or applications interoperating
with one another using fully specified ontologies. Support for query interoperation
across multiple, heterogeneous databases is considered a part of this scenario.

While the requirements for ontologies to support these kinds of applications are
extensive, key features include: (1) the ability to represent situational concepts, such

 18

as player/actor – role – action – object – state, (2) the necessity for multiple
representations and/or views of the same concepts and relations, and (3) separation of
concerns, such as separating the vocabularies and semantics relevant to particular
interfaces, protocols, processes, and services from the semantics of the domain.

Application Generation
A common worldview, universe of discourse, or domain is described by a set of

ontologies, providing the context or situational environment required for use by some
set of agents, services, and/or applications. These applications might be internally
focused in very large organizations, such as within a specific hospital with multiple,
loosely coupled clinics, but are more likely multi- or cross-organizational
applications. Characteristics include:

 Authoritative environments, with tighter coupling between resources and

applications than in cases that are less authoritative or involve broader
domains, though likely on the “looser side” of the overall continuum.

 Ontologies shared among organizations are highly controlled from a standards
perspective, but may be specialized by the individual organizations that use
them within agreed parameters.

 The knowledge bases implementing the ontologies are likely to be
dynamically modified, augmented at run time by new metadata, gathered or
inferred by the applications using them.

 The ontologies themselves are likely to be deeper and narrower, with a high
degree of formality in their definition, focused on the specific domain of
interest or concepts and perspectives related to those domains.

For example:
a) Dynamic regulatory compliance and policy administration applications for

security, logistics, manufacturing, financial services, or other industries.
b) Applications that support sharing clinical observation, test results, medical

imagery, prescription and non-prescription drug information (with resolution
support for interaction), relevant insurance coverage information, and so forth
across clinical environments, enabling true continuity of patient care.

The ontologies used by the applications may be fully specified where they

interoperate with external organizations and components, but not necessarily fully
specified where the interaction is internal. Conceptual knowledge representing
priorities and precedence operations, time and temporal relevance, rich manufacturing
processes, and other complex notions may be required, depending on the domain and
application requirements.

 19

Ontology Lifecycle
In this scenario we are concerned with activity, which has as its principle objectives

conceptual knowledge analysis, capture, representation, and maintenance. Ontology
repositories should be able to support rich ontologies suitable for use in knowledge-based
applications, intelligent agents, and semantic web services. Examples include:

a) Maintenance, storage and archiving of ontologies for legal, administrative and

historical purposes,
b) Test suite generation, and
c) Audits and controllability analysis.

Ontological information will be included in a standard repository for management,
storage and archiving. This may be to satisfy legal or operations requirements to maintain
version histories.

These types of applications require that Knowledge Engineers interact with Subject
Matter Experts to collect knowledge to be captured. UML models provide a visual
representation of ontologies facilitating interaction. The existence of meta-data standards,
such as XMI and ODM, will support the development of tools specifically for Quality
Assurance Engineers and Repository Librarians.

Full life-cycle support will be needed to provide managed and controlled progression
from analysis, through design, implementation, test and deployment, continuing on
through the supported systems maintenance period. Part of the lifecycle of ontologies
must include collaboration with development teams and their tools, specifically in this
case configuration and requirements management tools. Ideally, any ontology
management tool will also be ontology aware. It will provide an inherent quality
assurance capability by providing consistency checking and validation. IT will also
provide mappings and similarity analysis support to integrate multiple internal and
external ontologies into a federated web.

Analytic Applications

Emergent Property Discovery
By this we mean applications that analyze, observe, learn from and evolve as a result of, or manage

other applications and environments. The ontologies required to support such applications include
ontologies that express properties of these external applications or the resources they use. The
environments may or may not be authoritative; the ontologies they use may be specific to the application or
may be standard or utility ontologies used by a broader community. The knowledge bases that implement
the ontologies are likely to be dynamically augmented with metadata gathered as a part of the work
performed by these applications. External information resources and applications are accessed in a read-
only mode.

a) Semantically grounded knowledge discovery and analysis (e.g., financial,
market research, intelligence operations)

 20

b) Semantics assisted search of data stored in databases or content stored on the
Web (e.g., using domain ontologies to assist database search, using linguistic
ontologies to assist Web content search)

c) Semantically assisted systems, network, and / or applications management.
d) Conflict discovery and prediction in information resources for self-service and

manned support operations (e.g., technology call center operations, clinical
response centers, drug interaction)

What these have in common is that the ontology is typically not directly expressed

in the data of interest, but represents theories about the processes generating the data
or emergent properties of the data. Requirements include representation of the objects
in the ontology as rules, predicates, queries or patterns in the underlying primary data.

Exchange of Complex Data Sets
Applications in this class are primarily interested in the exchange of complex

(multi-media) data in scientific, engineering or other cooperative work. The
ontologies are typically used to describe the often complex multimedia containers for
data, but typically not the contents or interpretation of the data, which is often either
at issue or proprietary to particular players. (The OMG standards development
process is an example of this kind of application.)

Here the ontology functions more like a rich type system. It would often be
combined with ontologies of other kinds (for example an ontology of radiological
images might be linked to SNOMED for medical records and insurance
reimbursement purposes).

Requirements include representation of complex objects (aggregations of parts),
and multiple inheritance where each semantic dimension or facet can have complex
structure.

Engineering Applications
The requirements for ontology development environments need to consider both

externally and internally focused applications, as externally focused but authoritative
environments may require collaborative ontology development.

Information Systems Development
The kinds of applications considered here are those that use ontologies and

knowledge bases to support enterprise systems design and interoperation. They may
include:

a) Applications developed using a Model-Driven Architecture (MDA)

methodology and tooling, where an application actually composes various

 21

components and/or creates software to implement a world that is described by
one or more component ontologies.

b) Semantic integration of heterogeneous data sources and applications
(involving diverse types of data schema formats and structures, applicable in
information integration, data warehousing and enterprise application
integration).

c) Application development for knowledge based systems, in general.

In the case of model-based applications, extent-descriptive predicates are needed to
provide enough meta-information to exercise design options in the generated software
(e.g., describing class size, probability of realization of optional classes). An example
paradigm might reflect how an SQL query optimizer uses system catalog information to
generate a query plan to satisfy the specification provided by an SQL query. Similar
sorts of predicates are needed to represent quality-type meta-attributes in semantic web
type applications (comprehensiveness, authoritativeness, currency).

Ontology Analysis
Applications in this class are intended for use by an information systems development team, for

utilization in the development and exploitation of ontologies that make implicit design artifacts explicit,
such as ontologies representing process or service vocabularies relevant to some set of components.
Examples include:

a) Tools for ontology analysis, visualization, and interface generation.
b) Reverse engineering and design recovery applications.

 The ontologies are used throughout the enterprise system development life cycle

process to augment and enhance the target system as well as to support validation and
maintenance. Such ontologies should be complementary to and augment other UML
modeling artifacts developed as part of the enterprise software development process.
Knowledge engineering requirements may include some ontology development for
traditional domain, process, or service ontologies, but may also include:

 Generation of standard ontology descriptions (e.g., OWL) from UML models.
 Generation of UML models from standard ontology descriptions (e.g., OWL).
 Integration of standard ontology descriptions (e.g., OWL) with UML models.

Key requirements for ontology development environments supporting such activities include:

 Collaborative development
 Concurrent access and ontology sharing capabilities, including configuration management and

version control of ontologies in conjunction with other software models and artifacts at the
atomic level within a given ontology, including deprecated and deleted ontology elements

 22

 Forward and reverse engineering of ontologies throughout all phases of the software
development lifecycle

 Ease of use, with as much transparency with respect to the knowledge engineering details as
possible from the user perspective

 Interoperation with other tools in the software development environment; integrated
development environments

 Localization support
 Cross-language support (ontology languages as opposed to natural or software languages,

such as generation of ontologies in the XML/RDF(S)/OWL family of description logics
languages, or in the Knowledge Interchange Format (KIF) where first or higher order logics
are required)

 Support for ontology analysis, including deductive closure; ontology comparison, merging,
alignment and transformation

 Support for import/reverse engineering of RDBMS schemas, XML schemas and other semi-
structured resources as a basis for ontology development

Goals for ODM
The diversity of the usage scenarios illustrates the wide applicability of ontologies

within the domain of information systems. The ODM should be able to address a broad
range of ontological representations, not only those that are currently known, for example
OWL and KIF, but to the extent possible those that may emerge in the future.
Consideration of these diverse usage scenarios has lead to a number of goals for the
ODM:

1. Support ontologies expressed in existing description logic, (e.g. OWL/DL) and

higher order logic languages (e.g. OWL Full and KIF).
2. Provide a basis for information systems process descriptions to support

interoperability, including such concepts as player, role, action, and object.

3. Support physical world concepts, including time, space, bulk or mass nouns like
‘water’, and things that do not have identifiable instances.

4. Support object concepts that have multiple facets of representations, e.g.,
conceptual versus representational classes.

5. Provide a basis for describing stateful representations, such as finite state
automaton to support an autonomous agent’s world representation.

6. Model-based architectures require extent-descriptive predicates to provide a
description of a resource in an ontology, then generating a specific instantiation of
that resource.

7. Efficient mechanisms will be needed to represent large numbers of similar classes
or instances.

8. Structures and tools to assemble and disassemble complex sets of scientific and
multi-media data.

 23

9. Ontology tools needs to support modules and version control.

These goals, on their face could require considerably complexity in the ODM,

however it is desired that a relatively simple approach be identified.

References
[1] OWL Web Ontology Language Usage scenarios and Requirements, W3C

Candidate Recommendation, 18 August 2003, http://www.w3.org/TR/webont-req/

 24

Appendix B – Selected Paper – OWL Full and UML 2.0
Compared

This appendix was originally published as:

• L.Hart, P. Emery, B. Colomb, K. Raymond S.Taraporewalla, D. Chang, Y. Ye, E.

Kendall, M. Dutra, "OWL Full and UML 2.0 Compared",
http://www.omg.org/cgi-bin/doc?ontology/2004-03-01

 25

OWL Full and UML 2.0 Compared

This document is intended to establish the relationship between the relevant

features of UML 2.0 and OWL as part of the development of the Ontology
Definition Metamodel (ODM). The contents of the final version of this document
will be incorporated in the ODM specification to provide guidelines for the
translation of UML models to the ODM.

Version 2.4
March 2004

Co-submitters:
AT&T/Gentleware Lewis Hart, Patrick Emery
DSTC Bob Colomb, Kerry Raymond, Sarah Taraporewalla
IBM Dan Chang, Yiming Ye
Sandpiper Software Elisa Kendall, Mark Dutra

 26

1. Introduction
This note compares the features of OWL Full (as summarized in [1]) with the features of
UML 2.0 [2] as a preliminary analysis supporting the design of an Ontology
Development Metamodel. It first looks at the features the two have in common, although
sometimes represented differently, then the features in one but not the other. Little
attempt is made to distinguish the features of OWL Lite or OWL DL from those of OWL
Full. This note ignores secondary features such as headers, comments and version
control. In the features in common, a sketch is given of the translation from a model
expressed in UML to an OWL expression. In several cases, there are alternative ways to
translate UML constructs to OWL constructs. This document selects a particular way in
each case, but the translation is not intended to be normative. In particular applications
other choices may be preferable.

The possible translation of OWL to UML is out of scope of this document.

UML models are organized in a series of metalevels : M3, M2, M1 and M0, as follows:

• M3 is the MOF, the universal modeling language in which modeling systems are
specified.

• M2 is the model of a particular modeling system. The UML metamodel is an M2
construct, as it is specified in the M3 MOF.

• M1 is the model of a particular application represented in a particular modeling
system. The UML Class diagram model of an order entry system is an M1
construct expressed in the M2 metamodel for the UML Class diagram.

• M0 is the population of a particular application. The population of a particular
order entry system at a particular time is an M0 construct.

 27

2. Features in common (more or less)

2.1 UML Kernel

 Class

Property

 Association

 ownedAttribute

 ownedEnd

 memberEnd

 * *

 0..1

 0..1
 2..*

 0..1

 Abstracted from UML Superstructure [2] Figure 30, Section 7.11 page 80

 Type Classifier
 generalization

 type

 0..1

Figure 1. Key aspects of UML Class Diagram

The structure of UML is formally quite different from OWL. What we are trying to do is
to understand the relationship between an M1/M0 model in UML and the equivalent
model in OWL, so we need to understand how the M1 model is represented in the M2
structure shown. First, a few observations from Figure 1.

• Most of the content of a UML model is in the M1 specification. The M0 model
can be anything that meets the specification of the M1 model.

• There is no direct linkage between Association and Class. The linkage is mediated
by Property.

• A Property is a structural feature (not shown), which is typed. The M1 model is
built from structural features.

• Both Class and Association are types.

• A class always has a property which is the structural feature that implements it.

• A property may or may not be owned by one or more classes. A property owned
by at least one class is called navigable1. A property owned by no class is called
not navigable2. Only binary associations can have navigable ends.

It will help if we represent a simple M1 model in this structure (Figure 2).

1 Called a member end in the Classes diagram of the UML superstructure
2 Called an owned end in the Classes diagram of the UML superstructure

 28

 Course
 code
 description

NumEnrolled

 Student
 ID
 name

 enrolled

Figure 2. Simple M1 Model

The properties with their types are

Table 1

Property Type

code CourseIdentifier

description string

NumEnrolled integer

ID StudentIdentifier

name string

The classes are: Course, Student

Classes are represented by sets of ownedAttribute properties:

Table 2

Class Owned Properties

Course code, description, NumEnrolled

Student ID, name

Associations are: enrolled

The association can be modeled in a number of different ways, depending on how classes
are represented. If classes are represented as in table 2, one way is as the disjoint union of
the owned attributes of the two classes.

Table 3

Association Representation

enrolled code, description, NumEnrolled, ID, name

But there are other ways to represent a class. If it is known that the property code
identifies instances of Course and that the property ID identifies instances of Student,
then an alternative representation of enrolled is

 29

Table 4

Association Representation

enrolled code, ID

In this case, the properties code and ID would be of type Course and Student
respectively.

2.2 Class and property - basics
Both OWL and UML are based on classes. A class is a set of instances. The set of
instances associated at a particular time with a class is called the class’ extent. But there
are subtle differences.

In UML the extent of a class is an M0 object consisting of instances. An instance consists
of a set of slots each of which contains a value drawn from the type of the property of the
slot. The instance is associated with one or more classifiers. An instance of the class
Course might be

Table 5

Classifier code title NumEnrolled

Course INFS3101 Ontology and the Semantic Web 0

But the M0 implementation of a class is not fully constrained. An equally valid instance
of Course would be the name INFS3101, if it were decided that that name would identify
an instance of the class. The remainder of the slots could be filled dynamically from other
properties of the class.

In OWL, the extent of a class is a set of individuals, which are represented by names.
Individual is defined independently of classes. There is a universal class Thing whose
extent is all individuals in a given OWL model, and all classes are subclasses of Thing.
The main difference between UML and OWL in respect of instances is that in OWL an
individual may be an instance of Thing and not necessarily any other class, so could be
outside the system in a UML model.

An OWL class is declared by assigning a name to the relevant type. For example

<owl:Class rdf:ID="Course"/>

An individual is at bottom an RDFS resource, which is essentially a name, so the
individual INFS3101 will be declared with something like

<owl:Thing rdf:ID = “INFS3101”/>

Relationships among classes in OWL are called properties. That the class course has the
relationship with the class student called enrolled, which was represented in the UML
model as the association enrolled, is represented in OWL as a property

<owl:ObjectProperty rdf:ID = “enrolled”/>

 30

Properties are not necessarily tied to classes. By default, a property is a binary relation
between Thing and Thing.

So, in order to translate the M1 model of Figure 2 to OWL, UML Class goes to
owl:Class.

Table 6
Class Owned

properties
OWL equivalent

Course code,
description,
NumEnrolled

<owl:Class rdf:ID="Course"/>

Student ID, name <owl:Class rdf:ID="Student"/>

The relationships among classes represented in OWL by owl:ObjectProperty and
owl:DatatypeProperty come from two different sources in the UML model. One source is
the M2 association ownedAttribute between Class and Property, which generates the
representation of a class as a bundle of owned properties as in Table 2. A M1 instance of
Class ownedAttribute Property would translate as properties whose domain is Class and
whose range is the type of Property. The UML ownedAttribute instance would translate
to owl:ObjectProperty if the type of Property were a UML Class, and
owl:DatatypeProperty otherwise. The translation of Table 2 is shown in Table 7. Note
that UML ownedAttribute M2 associations are distinct, even if ownedAttributes have the
same name associated with different classes. The owl property names must therefore be
unique. One way to do this is to use a combination of the class name and the owned
property name. Note also that since instances of ownedAttribute are always relationships
among types, the equivalent OWL properties all have domain and range specified.

An alternative way to give domain and range to OWL properties is to use restriction to
allValuesFrom the range class when the property is applied to the domain class. This is
probably a more natural OWL specification. However, since all OWL properties arising
from a UML model are distinct, the method employed in this document is adequate.
Should a translation of a UML model be intended as a base for further development in
OWL, an appropriate translation can be employed.

 31

Table 7
C

lass
Owne

d
property

Type of
owned
property

OWL equivalent

C
ours
e

code CourseID <owl:ObjectProperty
rdf:ID="CourseCode">

 <rdfs:domain
rdf:resource="Course"/>

 <rdfs:range
rdf:resource="CourseID"/>

 </owl:ObjectProperty>
 descri

ption
string <owl:DatatypeProperty

rdf:ID="CourseDescription">
 <rdfs:domain

rdf:resource="Course"/>
 <rdfs:range

rdf:resource="http://www.w3.org/2001/
XMLSchema#string"/>
 </owl:DatatypeProperty>

 Num
Enrolled

integer <owl:DatatypeProperty
rdf:ID="CourseEnrolled">

 <rdfs:domain
rdf:resource="Course"/>

 <rdfs:range
rdf:resource="http://www.w3.org/2001/

XMLSchema#integer"/>
</owl:DatatypeProperty>

S
tude
nt

ID StudentIde
nt

<owl:ObjectProperty
rdf:ID="StudentID">

 <rdfs:domain
rdf:resource="Student"/>

 <rdfs:range
rdf:resource="StudentIdent"/>

 </owl:ObjectProperty>
 name string <owl:DatatypeProperty

rdf:ID="StudentName">
 <rdfs:domain

rdf:resource="Student"/>
 <rdfs:range

rdf:resource="http://www.w3.org/2001/
XMLSchema#string"/>
</owl:DatatypeProperty>

Note that the translation in Table 7 assumes that a single name is an identifier for
instances of the corresponding class. This is not always true. That is there are cases in
which a relational database implementation would use a compound key to identify an
instance of a class. Since OWL individuals are always unitary names, the translation of
the UML class would construct a unitary name from the instances of the individual
properties. For example, if the association enrolled were treated as a class (UML
association class), its representing property might be a concatenation of Course.code and

 32

Student.id, so that student 1234 enrolled in course INFS3101 might be translated to an
OWL individual with name 1234.INFS3101.

The second source of owl properties in a UML M1 model is the M1 population of the M2
class association. A binary UML association translates directly to an owl:ObjectProperty.
The translation of Table 4 is given in Table 8. Note that since associations in UML are
always between types, the OWL property always has domain and range specified. If the
association name occurs more than once in the same model, it must be disambiguated in
the OWL translation, for example by concatenating the member names to the association
name.

Table 8
Association Member 1

Property
Type

Member 2
Property

Type

OWL equivalent

enrolled Course Student <owl:ObjectProperty
rdf:ID="enrolled">

 <rdfs:domain
rdf:resource="Course"/>

 <rdfs:range
rdf:resource="Student"/>

 </owl:ObjectProperty>

Both languages support the subclass relationship (OWL rdfs:subClassOf, UML
generalization). Both also support subproperties (UML generalization of association).
UML defines generalization at the supertype classifier, while in OWL subtype and
subproperty are separately but identically defined.

The translation from UML to OWL is straightforward. If <S, G> is an M1 instance of the
UML M2 association generalization (S is a subclassifier of G), then if both S and G are
classes and TS, TG are respectively the types of the identifying owned property of S, G
respectively, the OWL equivalent is the addition of the clause

<rdfs:subClassOf rdf:resource="TG"/>

to the definition of the OWL class TS. Similarly if S and G are both associations, the owl
equivalent is the addition of the clause

<rdfs:subPropertyOf rdf:resource="G"/>

to the definition of the OWL object property S.

 33

 Course
 code
 description
NumEnrolled

 Student
 ID
 name

 enrolled

 enrolled

 grade

 Staff
 ID
 name

 instructor

Figure 3. M1 model with association class

An association in UML can be N-ary. It can have a non-navigable end (ownedEnd). It can
also be a class (association class), so can participate in further associations. In OWL DL,
classes and properties are disjoint, but in OWL Full they are overlapping. However, there
is limited syntactic mechanism in the documents so far published to support this overlap.
There is an advantage in translating these more complex associations to structures
supported by OWL DL. In any case, the translations proposed are not normative, so those
responsible for a particular application can use more powerful features of OWL if there is
an advantage to doing so.

Our proposal takes advantage of the fact that an N-ary relation among types T1 ... TN is
formally equivalent to a set R of identifiers together with N projection functions P1, ...,
PN, where Pi:R -> Ti. Thereby N-ary UML associations are translated to OWL classes
with bundles of binary functional properties.

The model of Figure 3 is represented in table form in Table 9.

 34

Table 9

Association End Type

enrolled 1 Course

 2 Student

 3 Grade

 4 enrolled

instructor 1 enrolled

 2 Staff

Instructor is translated into an OWL property in the same way as shown in Table 8.
However, enrolled would be translated into the following OWL statement:

<owl:Class rdf:ID="enrolled" / >
<owl:FunctionalProperty rdf:ID="enrolledCourse">

 <rdfs:domain rdf:resource="enrolled”/>
 <rdfs: range rdf:resource="Course"/>
 </owl:FunctionalProperty >

<owl:FunctionalProperty rdf:ID="enrolledStudent">
 <rdfs:domain rdf:resource=“enrolled”/>
 <rdfs: range rdf:resource="Student"/>
 </owl:FunctionalProperty >

<owl:FunctionalProperty rdf:ID="enrolledGrade">
 <rdfs:domain rdf:resource=“enrolled”/>
 <rdfs: range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:FunctionalProperty >

<owl:FunctionalProperty rdf:ID="enrolledenrolled">
 <rdfs:domain rdf:resource=“enrolled”/>
 <rdfs: range rdf:resource=“enrolled”/>
 </owl:FunctionalProperty >

2.3 More advanced concepts
There are a number of more advanced concepts in both UML and OWL. In the cases
where the UML concept occurs in OWL, the translation is often quite straightforward, so
will not always be shown.

Both languages support a module structure, called package in UML and ontology in
OWL. The translation of package to ontology is straightforward.

 35

Both UML and OWL support a fixed defined extent for a class (OWL oneOf, UML
enumeration).

UML has the option for binary associations to have distinguished ends which can be
navigable or non-navigable. A navigable property is one which is owned by a class,
while a non-navigable is not (an integer, say). OWL properties always are binary and
have distinguished ends called domain and range. A UML binary association with one
navigable end and one non-navigable end will be translated into a property whose domain
is the navigable end. A UML binary association with two navigable ends will be
translated into a pair of OWL properties, where one is inverseOf the other.

A key difference is that in OWL a property is defined by default as having range and
domain both Thing. A given property therefore can in principle apply to any class. So a
property name has global scope and is the same property wherever it appears. In UML
the scope of a property is limited to the subclasses of the class on which it is defined. A
UML association name can be duplicated in a given diagram, with each occurrence
having a different semantics.

An OWL individual can therefore be outside the system in a UML model. UML has a
facility dynamic classification which allows an instance of one class to be changed into
an instance of another, which captures some of the features of Individual, but an object
must always be an instance of some (non-universal) class.

Both languages allow a class to be a subclass of more than one class (multiple
inheritance). Both allow subclasses of a class to be declared disjoint. UML allows a
collection of subclasses to be declared to cover a superclass, that is to say every instance
of the superclass is an instance of at least one of the subclasses. The corresponding OWL
construct is the declare the superclass to be the union of the subclasses, using the
construct unionOf. (Note that the OWL construct unionOf applies to other RDF
resources than classes, so this is a restricted use.)

UML has a strict separation of metalevels, so that the population of M1 classes is distinct
from the population of M0 instances. OWL Full permits classes to be instances of other
classes.

In OWL, a property when applied to a class can be constrained by cardinality restrictions
on the domain giving the minimum (minCardinality) and maximum (maxCardinality)
number of instances which can participate in the relation. In addition, an OWL property
can be globally declared as functional (functionalProperty) or inverse functional
(inverseFunctional). A functional property has a maximum cardinality of 1 on its range,
while an inverse functional property has a maximum cardinality of 1 on its domain. In
UML an association can have minimum and maximum cardinalities
(multiplicity)specified for any of its ends. OWL allows individual-valued properties
(objectProperty) to be declared in pairs, one the inverse of the other.

So if a binary UML association has a multiplicity on a navigable end, the corresponding
OWL property will have the same multiplicity. If a binary UML association has a

 36

multiplicity on its both ends, then the corresponding OWL property will be an inverse
pair, each having one of the multiplicity declarations.

For an N-ary UML association, any multiplicity associated with one of its UML
properties will apply to the OWL property translating the corresponding projection.

 Event
 eventID

 Olympiad
year

 competes

 result
 Competitor
 name

 1..* 1..*

 1..*

Figure 4. Example N-ary association with multiplicity

The N-ary association in Figure 4 would be translated as below, assuming that the
attribute result has multiplicity 1..1. Note that there are several alternative OWL
syntaxes. This particular version has inline restrictions with no XML Entity Declarations.
It is the simplest, and since UML associations are distinct this version reflects UML well.
Should a particular application wish to use a model translated from UML as a base for
further development in OWL, an appropriate variant may be used.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf=" http://www.w3.org/1999/02/22-rdf-syntax-ns

<http://www.w3.org/1999/02/22-rdf-syntax-ns> #"
 xmlns:rdfs=" http://www.w3.org/2000/01/rdf-schema

<http://www.w3.org/2000/01/rdf-schema> #"
 xmlns:owl=" http://www.w3.org/2002/07/owl <http://www.w3.org/2002/07/owl>

#"xmlns:xsd=" http://www.w3.org/2001/XMLSchema
<http://www.w3.org/2001/XMLSchema> #"

>
 <owl:Class rdf:ID="competes">
 <owl:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="competesEvent"/>
 <owl:minCardinality

rdf:datatype="xsd:nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </owl:subClassOf>
 <owl:subClassOf>

 37

 <owl:Restriction>
 <owl:onProperty rdf:resource="competesCompetitor"/>
 <owl:minCardinality

rdf:datatype="xsd:nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </owl:subClassOf>
 <owl:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#competesOlympiad"/>
 <owl:minCardinality

rdf:datatype="xsd:nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </owl:subClassOf>
 <owl:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#competesResult"/>
 <owl:minCardinality

rdf:datatype="xsd:nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </owl:subClassOf>
 <owl:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#competesResult"/>
 <owl:maxCardinality

rdf:datatype="xsd;nonNegativeInteger">1</owl:maxCardinality>
 </owl:Restriction>
 </owl:subClassOf>
</owl:Class>
<owl:FunctionalProperty rdf:ID="competesEvent">
 <rdfs:domain rdf:resource="#competes"/>
 <rdfs:range rdf:resource="#Event"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="competesCompetitor">
 <rdfs:domain rdf:resource="#competes"/>
 <rdfs:range rdf:resource="#Competitor"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="competesOlympiad">

 38

 <rdfs:domain rdf:resource="#competes"/>
 <rdfs:range rdf:resource="#Olympiad"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="competesResult">
 <rdfs:domain rdf:resource="#competes"/>
 <rdfs:range rdf:resource=" http://www.w3.org/2001/XMLSchema#string"/
<http://www.w3.org/2001/XMLSchema#string> >
</owl:FunctionalProperty>
</rdf:RDF>

The difference in scope of property names leads to a difference in the use of cardinality
restrictions. In UML an association with its multiplicity is generally declared only once,
whereas an OWL property can have different (compatible) cardinalities when applied to
different classes.

Note that the class might be the domain of a property for which the individual might
not have a value. This can happen if the mincardinality of the domain of the property is 0
(or maxcardinality < mincardinality)3, in which case the property is optional (or partial)
for that class. The same can happen in UML. An instance of a class is constrained to
participate only in properties which are mandatory, minimum cardinality >0.
So an instance can lack optional properties.

However, even if the property is mandatory (mincardinality > 0 and maxcardinality >=
mincardinality), there may not be definite values for the property. Consider a class (K)
for which a property (P) is mandatory. In this case, the individual (I) must satisfy the
predicate

[M]: I instance of K -> exists X such that P(I) = X.

It is not required in OWL that there be a constant C such that X = C. All horses have
color, but we may not know what color a particular horse has.

In UML, there is a strict separation between the M1 and M0 levels. At the M1 level, that
an association is mandatory (minimum cardinality greater than 0) is exactly the predicate
[M]. Any difference between UML and OWL must come from the treatment of the model
of the M1 theory at the M0 level. In practice, M0 models in UML applications tend to be
Herbrand models implemented by something like an SQL database manager. For these
cases, if we know a horse has a color, then we know what color it has.

But UML does not mandate M0 models to be Herbrand models. In particular SQL-92
supports the Null value construct, which has multiple interpretations, including “value
exists but is not known”. Some years ago, CJ Date proposed a zoo of nulls with specific
meanings, including “value exists but is not known”, and there have been proposals by
Ray Reiter and others for databases with either existentially quantified variables in the

3 This is a somewhat strange construct. It is syntactically correct in OWL and has the semantics that the

property has no instances. It can occur where multiple autonomous ontologies are merged, for example.

 39

data or which reason with the M1 theory for existentially quantified queries. It is possible
for a particular application to introduce a special constant “unknown” into a class, which
is treated specially by the programs. UML does not forbid an implementation of a class
model in one of these ways. So there is no difference in principle between UML and
OWL for properties which are declared to have minCardinality greater than 0 (and
maxCardinality >= minCardinality) for a class.

Note that a consequence of this possible indeterminacy, it may not be possible to
compute a transitive closure for a property across several ontologies, even if they share
individuals.

An OWL property can have its range restricted when applied to a particular class, either
that the range is limited to a class (subclass of range if declared) (allValuesFrom) or that
the range must intersect a class (someValuesFrom).

OWL allows properties to be declared symmetric (SymmetricProperty) or transitive
(TransitiveProperty). In both cases the domain and range must be type compatible.

OWL permits declaration of a property whose value is the same for all instances of a
class, so the property value is in effect attached to the class (OWL DL property declared
as allValuesFrom a singleton set for that class). OWL full allows properties to be directly
assigned to classes without special machinery. If class A is an instance of class B, then a
property P whose domain includes B will designate a value P(A) which applies to the
class A so is common to all instances of A.

UML allows a property to be derived from other model constructs, for example a
composition of associations or from a generalization.

Two different objects modeled in UML may have dependencies which are not
represented by UML named (model) elements, so that a change in one (the supplier)
requiring a change in the other (the client) will not be signaled by for example association
links. Two such objects may be declared dependent. There are a number of subclasses of
dependency, including abstraction, usage, permission, realization and substitution. OWL
does not have a comparable feature, but RDF, the parent of OWL, permits an
RDF:property relation between very general elements classified by RDFS:Class.
Therefore, a dependency relationship between a supplier and client UML model element
will be translated to a reserved name RDF:Property relation whose domain and range are
both RDF:Class. Population of the property will include the individuals which are the
target of the translation of the supplier and client named elements.

2.4 Summary of more or less common features
This section has described features of UML and OWL which are in most respects similar.
Table 10 summarizes the features of UML in this feature space, giving the equivalent
OWL features. UML features are grouped in clusters which translate to a single OWL
feature or a cluster of related OWL features. The column Package shows the section of
the UML Superstructure document [2] where the relevant features are documented.

 40

Table 10
UML features Package OWL features Comment
class, property

ownedAttribute ,type4
7.11 Classes
7.8 Classifiers
7.4 Multiplicities

class

instance 7.7 Instances individual OWL individual
independent of class

ownedAttribute,
binary association

7.11 Classes property OWL property
can be global

subclass,
generalization

7.11 Classes
7.8 Classifiers

subclass
subproperty

N-ary association,
association class

7.11 Classes
7.16 Association

Classes

class, property

enumeration 7.12 Datatypes oneOf
navigable, non-

navigable
7.2 Root domain, range

disjoint, cover 7.17 Powersets disjointWith,
unionOf

multiplicity 7.4 Multiplicities minCardinality
maxCardinality
inverseOf

OWL cardinality
declared for each
class

derived 7.11 Classes no equivalent
package 7.13 Packages ontology
dependency 7.14 Dependencies reserved name

RDF:properties

All of the UML features considered in the scope of the ODM have more-or-less
satisfactory OWL equivalents. Some OWL features in this feature space have no UML
equivalent, so are omitted from Table 10. They are summarized in Table 11.

Table 11

OWL features with no UML equivalent

4 This cell summarizes the relationship between UML class and OWL class mediated by property,

ownedAttribute and type. It does not signify that the latter three are themselves translated to OWL class.

 41

Thing, global properties, autonomous individual
class-specific cardinality redefinition5
allValuesFrom, someValuesFrom
SymmetricProperty, TransitiveProperty
Classes as instances

3. OWL but not UML

3.1 Predicate definition language
OWL permits a subclass to be declared using subclassOf or to be inferred from the
definition of a class in terms of other classes. It also permits a class to be defined as the
set of individuals which satisfy a restriction expression. These expressions can be a
boolean combination of other classes (intersectionOf, unionOf, complementOf), or
property value restriction on properties (requirement that a given property have a certain
value – hasValue). EquivalentClass applied to restriction expressions can be used to
define classes based on property restrictions.

For example, the class definition6

<owl:Class rdf:ID=”TexasThings”>
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource=”#locatedIn” />
<owl:allValuesFrom rdf:resource=”#TexasRegion” />

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

Defines the class TexasThings as a subclass of the domain of the property locatedIn.
These individuals are precisely those for which the range of locatedIn is in the class
TexasRegion. Given that we know an individual to be an instance of TexasThings, we can
infer that it has the property locatedIn, and all of the values of locatedIn associated with
it are instances of TexasRegion. Conversely, if we have an individual which has the
property locatedIn and all of the values of locatedIn associated with that individual are in
TexasRegion, we can infer that the individual is an instance of TexasThings.

Because it is possible to infer from the properties of an individual that it is a member of a
given class, we can think of the complex classes and property restrictions as a sort of
predicate definition language.

UML provides but does not mandate the predicate definition language OCL.

5 UML permits specializations of associations, but the current version of the superstructure specification

is silent on whether multiplicities can be redefined
6 OWL Web Ontology Language Guide http://www/w3/org/TR/2003/PR-owl-guide-20031215/ section

3.4.1

 42

OCL and SCL (Simple Common Logic) are two predicate definition languages which are
relevant to the ODM. Both are more expressive than the complex class and property
restriction expressions of OWL Full. There are also other predicate definition languages
of varying expressive powers which particular applications might wish to use.

The ODM will not mandate any particular predicate definition language, but will provide
a place for a package enabling the predicate definition language of choice for an
application.

3.2 Names
A common assumption in computing applications is that within a namespace the same
name always refers to the same object, and that different names always refer to different
objects (the unique name assumption). As a consequence, given a set of names, one can
count the names and infer that the names refer to that number of objects.

Names in OWL do not by default satisfy the unique name assumption. The same name
always refers to the same object, but a given object may be referred to by several
different names. Therefore counting a set of names does not warrant the inference that the
set refers to that number of objects. Names, however, are conceptually constants, not
variables.

OWL provides features to discipline names. The unique name assumption can be
declared to apply to a set of names (allDifferent). One name can be declared to refer to
the same object as another (sameAs). One name can be declared to refer to something
different from that referred to by any of a set of names (differentFrom).

Classes and properties are by default different, but two classes or two properties can be
stated to be equivalent (equivalentClass, equivalentProperty).

UML at the M1 level has names only for classes and properties. Although a UML class
may be defined to contain a definite collection of names, names are the province of M0.
Applications modeled in UML are frequently implemented using systems like SQL
which default the unique name assumption, but this is not mandated. UML places no
constraints on names at the M0 level.

In particular, it is permitted for applications modeled in UML to be implemented at the
M0 level using names which are variables. Note that the UML constraint language OCL
uses variables. OWL does not support variables at all.

It is proposed that the ODM adopt the OWL naming system.

3.3 Other OWL developments
There are a number of developments related to OWL which are not yet finalized,
including SWRL Semantic Web Rule Language and OWL services. These are considered
out of scope for the ODM. A translation of an out-of-scope model element will be to a
comment in the OWL target.

 43

4. In UML but not OWL

4.1 Behavioral features
UML allows the specification of behavioral features, which are essentially programs. One
use of behavioral features is to calculate property values. This use has already been
considered in the properties section above (derived properties). Other programs would
presumably have side effects. Facilities of UML supporting programs include
operations, which are method names; responsibilities, which specify which class is
responsible for what action; static operations, which are operations attached to a class
like static attributes; interface classes, which specify interfaces to operations; abstract
classes, whose operations are specified in subclasses; qualified associations, which are
programming language data structures; and active classes, which are classes each
instance of which controls its own thread of execution control.

It is proposed that the ODM omit behavioral features of UML.

4.2 Complex objects
UML supports various flavors of the part-of relationship between classes. In general, a
class (of parts) can have a part-of relationship with more than one class (of wholes). One
flavor (composition) specifies that every instance of a given class (of parts) can be a part
of at most one whole. Another (aggregation) specifies that instances of parts can be
shared among instances of wholes.

Composite structures are runtime instances of classes collaborating via connections.
They are used to hierarchically decompose a class into its internal structure which allows
a complex objects to be broken down into parts. These diagrams extend the capabilities
of class diagrams, which do not specify how internal parts are organized within a
containing class and have no direct means of specifying how interfaces of internal parts
interact with its environment.

Ports and Connectors model how internal instances are to be organized. Ports define an
interaction point between a class and its environment or a class and its contents. They
allow you to group the required and provided interfaces into logical interactions that a
component has with the outside world. Collaboration provides constructs for modeling
roles played by connectors.

Comparing complex objects can be problematic, because often a whole object is
considered to remain “the same” even though some of its parts might change. UML
supports reference objects , which are the same if they have the same name regardless of
content, and value objects, which need to have the same content to be the same.

Although not strictly part of the complex object feature set, the feature template
(parameterized class) is most useful where the parameterized class is complex. One could
for example define a multimedia object class for movies, and use it as a template for a
collection of classes of genres of movie, or a complex object giving the results of the

 44

instrumentation on a fusion reactor which would be a template for classes containing the
results of experiments with different objectives.

Although it is recognized that there is a need for facilities to model mereotopological
relationships in ontologies, there does not seem to be sufficient agreement on the scope
and semantics of existing models for inclusion of specific mereotopological modeling
features into the ODM at this stage.

These modeling elements will be translated to properties or classes as ownedAttributes or
association ends. The target elements will be annotated with appropriate comments.

4.3 Access control
UML permits a property to be designated read-only. It also allows classes to have public
and private elements.

It is proposed that the ODM omit access control features.

4.4 Keywords
UML has keywords which are used to extend the functionality of the basic diagrams.
They also reduce the amount of symbols to remember by replacing them with standard
arrows and boxes and attaching a <<keyword>> between guillements. A common feature
that uses this is <<interfaces>>.

It is proposed that the ODM omit this feature.

5. References
[1] OWL Web Ontology Language Overview , W3C Proposed Recommendation 15
December 2003, http://www.w3.org/TR/2003/PR-owl-features-20031215/

[2]
http://www.omg.org/techprocess/meetings/schedule/UML_2.0_Superstructure_F
TF.html

